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A generalized solution for pressure-driven flow through a permeable rotating inner
cylinder in an impermeable concentric outer cylinder, a situation used commercially
in rotating filtration, is challenging due to the interdependence between the pressure
drop in the axial direction and that across the permeable inner cylinder. Most previous
approaches required either an imposed radial velocity at the inner cylinder or radial
throughflow with both the inner and outer cylinders being permeable. We provide
an analytical solution for rotating Couette–Poiseuille flow with Darcy’s law at the
inner cylinder by using a small parameter related to the permeability of the inner
cylinder. The theory works for suction, injection and even combined suction/injection,
when the axial pressure drop in the annulus is such that the transmembrane pressure
difference reverses sign along the axial extent of the system. Corresponding numerical
simulations for finite-length systems match the theory very well.
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1. Introduction
One practical application of Taylor–Couette flow is rotating filtration. In these

systems, a permeable inner cylinder rotates in an impermeable concentric outer
cylinder. As a feed suspension or solution is pumped axially through the annulus
between the cylinders, a purified filtrate is extracted through the permeable cylinder.
Rotating filtration reduces the undesirable build up of solutes or particles adjacent
to the membrane because the shear due to the rotating cylinder and the vortical
structures that develop in the annulus wash contaminants away from the inner
cylinder. Rotating filtration has been demonstrated experimentally for a wide range
of permeabilities and solutions (Jaffrin 2008), and also has applications for mixing
and emulsification. Though the subject of more than 30 papers since 1990, the fluid
mechanics of rotating filtration are not completely understood. The complex fluid flow
in the device includes transmembrane flow with a varying transmembrane pressure
difference, the transport of particles or solutes and the appearance of Taylor vortices.
Here we address the issue of laminar Couette–Poiseuille flow before the appearance of
vortices, with a pressure-dependent boundary condition for the transmembrane flow.
An analytical solution for this flow under realistic conditions has not been available
to date. This has hindered the study of near-membrane transport phenomena related
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to the coupling between the transmembrane pressure and flow, such as cake layers,
concentration boundary layers, osmotic pressure and membrane fouling, as well as
large-scale phenomena such as the effects of the axial inhomogeneity of the base flow
on global stability and the transport of particles or solutes.

Even relatively simple flows with suction or injection through permeable walls
have proved challenging. Early studies of channels (Berman 1953), cylindrical pipes
(Yuan & Finkelstein 1956) and annuli (Berman 1958; Morel, Lavan & Bernstein
1977) prescribed a uniform wall-normal velocity at the permeable surface. In real
applications, however, the wall-normal velocity generally depends on the pressure at
the wall. A pressure-dependent approach was first used by Taylor (1956) for flow
through porous tubes and cones. Subsequently, several studies have considered a
pressure-dependent approach based on Darcy’s law for simple symmetric geometries
such as channel flows with two equally permeable walls (Haldenwang 2007) or
porous tubes (Regirer 1960; Galowin, Fletcher & DeSantis 1974; Damak et al. 2004).
Previous studies related to rotating filtration focus primarily on centrifugal instability.
In these cases, the simpler problem of a Couette–Poiseuille flow with an imposed
radial flow through two permeable cylinders is considered because there exists an
axially independent analytical solution amenable to modal linear stability analysis
(see Martinand, Serre & Lueptow 2009, and references therein). Analytical solutions
for cases with a single permeable cylinder are also available, but they prescribe a
constant wall-normal velocity at the permeable wall, and assume that the radial
velocity field is independent of the axial direction (Belfort et al. 1993; Marques,
Sanchez & Weidman 1998), neither of which is generally true in a rotating filter.

This study presents a formulation for Couette–Poiseuille flow with Darcy’s law
at the permeable rotating inner cylinder while constraining the outer cylinder to
be impermeable, thus matching the conditions for rotating filtration systems. The
approach works for radial suction or injection, and the pressure and velocity fields
generally depend slowly on the axial position. This makes possible the analysis of
a situation known as crossflow reversal, where flow through the permeable cylinder
reverses from suction to injection due to the axial pressure drop, as well as a
situation known as axial flow exhaustion, where axial flow is exhausted due to
suction through the permeable wall. Both situations are important because they are
typically undesirable in industrial applications. The analytical solution shows excellent
agreement with corresponding numerical simulations for finite-length systems.

2. Presentation of problem and analytical solution
We consider the steady incompressible axisymmetric Couette–Poiseuille flow

illustrated in figure 1. An annular fluid region is delimited by two concentric
cylinders of infinite axial extent of radii R1 and R2, where R1 <R2. The outer cylinder
is stationary and impermeable. The inner cylinder is made of a thin permeable
membrane of thickness h which rotates about its longitudinal axis with constant
angular velocity Ω . We assume that a cylindrical fluid cavity, 0 � r � R1 − h, in the
porous cylinder is maintained at a constant uniform pressure Pref . The rotating inner
cylinder drives an azimuthal Couette flow, v, while an axial pressure gradient drives
an axial annular Poiseuille flow, w. The transmembrane pressure difference between
the annulus and cavity results in a radial suction or injection, u, which varies with z.

The flow is governed by the steady Navier–Stokes and continuity equations. On
the outer cylinder, we apply the conditions u = v = w = 0. On the permeable inner
cylinder, we assume that v and w satisfy the no-slip condition, while u is related to
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Figure 1. Sketch of the annular geometry and laminar velocity profile, not to scale,
considered in this study: (a) r–z plane, (b) r–θ plane.

the transmembrane pressure difference through Darcy’s law,

u = − k

µh
(p|r=R1

− Pref ), v = ΩR1, w = 0, (2.1)

where p and µ are the fluid pressure and dynamic viscosity, respectively, and k is the
membrane permeability and has the units length squared. Without loss of generality,
we set Pref = 0. Guided by typical inlet conditions for a laboratory experiment, we

prescribe the transmembrane pressure difference Ptm and mean axial flow rate W at
z = 0,

Ptm = p|r=R1, z=0, W =
1

π
(
R2

2 − R2
1

) ∫ R2

R1

w|z=02πr dr. (2.2)

Note that prescribing P is equivalent to prescribing the transmembrane velocity at
the inlet, Utm = u(R1, 0) = −kPtm/(µh).

Generally, flows over permeable surfaces may have a non-zero tangential velocity
at the surface due to momentum transfer from the fluid region to the fluid in the
porous material (Beavers & Joseph 1967). The no-slip assumption is reasonable,
however, when a permeable surface is made up of small discrete holes, such that the
permeability is zero in the tangential directions, and the percentage area of the pores
on the permeable surface is small. In this case, the fluid flow is mostly normal to the
surface and the tangential velocity in the pores may be neglected.

We seek a solution to our problem in the form of an asymptotic expansion when
variations in the axial direction are small compared to those in the radial direction.
To motivate our approach, we introduce the following characteristic scales:

u ∼ Utm, w ∼ W, v ∼ ΩR1, p ∼ Ptm , r ∼ d, z ∼ L. (2.3)

We assume that variations in the radial direction scale with the annulus width
d = R2 − R1, while those in the axial direction scale with L, which remains to be
defined. Note that studies of Couette flow often scale the pressure with ρΩ2R2

1 , where
ρ is the fluid density. In (2.3), however, we use Ptm to stress the relationship between
the transmembrane velocity and pressure. Though either pressure scale can be used,
Ptm leads to the simplest definition of L. To illustrate one potential choice for L,
consider the particular case of flow between two impermeable cylinders, i.e. k = 0. In
this case, the pressure varies over an axial length scale Lp such that the pressure term
balances the viscous term in the axial momentum equation, ∂zp = µ(∂2

r w + r−1∂rw).
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Using relations (2.3) it can be then shown that d/Lp scales like

d

Lp

∼ µW

dPtm

. (2.4)

To illustrate another potential choice for L, consider the dead-end length, Lde , where
the axial flow is completely exhausted due to transmembrane suction. If the suction
velocity is constant over the entire cylinder, it can be shown that

d

Lde

∼ 2

1 + η

|Utm |
W

=
2

1 + η

dPtm

µW
σ, (2.5)

where σ = k/(hd) is the non-dimensional permeability and η = R1/R2. Note that
2/(1 + η) is of order one.

Variations in the axial direction are small compared to those in the radial direction
when the ratios d/Lp and d/Lde are both of order ε, where ε � 1 is a small parameter.
From (2.4)–(2.5), it follows that

d2

LpLde

∼ σ = O(ε2). (2.6)

Motivated by (2.6), we define ε =
√

σ and L = d/ε. Because σ typically varies between
10−10 and 10−8 (see Jaffrin 2008), ε =

√
σ is a physically natural parameter about

which to attempt an asymptotic expansion.
We introduce the non-dimensionalized variables

v̂ =
v

ΩR1

, p̂ =
p

ρΩ2R2
1

, r̂ =
r

d
, Ẑ =

z

L
= ε

z

d
, (2.7)

where v = [u v w]T. Note that the length scales for r̂ and Ẑ differ by a factor
ε. To be consistent with the existing literature, v̂ and p̂ are made non-dimensional
using ΩR1 and ρΩ2R2

1 , respectively. We define the rotational Reynolds number as
Re = ρΩR1d/µ. All subsequent equations and parameters are non-dimensional. For
notational convenience, we omit the ˆ symbol from the non-dimensional variables.
The governing equations and boundary conditions are

u∂ru − r−1v2 + εw∂Zu + ∂rp − Re−1
(
∂2

r u + r−1∂ru − r−2u + ε2∂2
Zu

)
= 0, (2.8a)

u∂rv + r−1uv + εw∂Zv − Re−1
(
∂2

r v + r−1∂rv − r−2v + ε2∂2
Zv

)
= 0, (2.8b)

u∂rw + εw∂Zw + ε∂Zp − Re−1
(
∂2

r w + r−1∂rw + ε2∂2
Zw

)
= 0, (2.8c)

∂ru + r−1u + ε∂Zw = 0, (2.8d)

u = −ε2Re p, v = 1, w = 0, on r = R1, (2.8e)

u = v = w = 0, on r = R2, (2.8f)

p|r=R1
= Ptm , w = W, on z = 0, (2.8g)

where ∂r = ∂/∂r and ∂Z = ∂/∂Z. Consistent with (2.7), the quantities R1 = η/(1 − η),
R2 = 1/(1 − η), Ptm and W are all non-dimensional. Darcy’s law appears in (2.8e)
through the relation σ = k/hd = ε2. We seek a solution in the form of the following
asymptotic expansion:

(v, p) = (v0, p0) + ε(v1, p1) + ε2(v2, p2) + O(ε3). (2.9)
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Substituting (2.9) into (2.8) and sorting by powers of ε, yields an hierarchy of systems
of partial differential equations and boundary conditions.

2.1. The zero-order problem

The governing equations and boundary conditions for the zero-order problem are

u0∂ru0 − r−1v2
0 + ∂rp0 − Re−1

(
∂2

r u0 + r−1∂ru0 − r2u0

)
= 0, (2.10a)

u0∂rv0 + r−1u0v0 − Re−1
(
∂2

r v0 + r−1∂rv0 − r−2v0

)
= 0, (2.10b)

u0∂rw0 − Re−1
(
∂2

r w0 + r−1∂rw0

)
= 0, (2.10c)

∂ru0 + r−1u0 = 0. (2.10d)

u0 = w0 = 0, v0 = 1, on r = R1, (2.10e)

u0 = v0 = w0 = 0, on r = R2. (2.10f)

Equations (2.10a)–(2.10f ) are readily solved to show that

u0 = w0 = 0, v0 =
R1

(
R2

2 − r2
)

Ar
, p0 =

R2
1R

2
2

2A2

(
r2

R2
2

− R2
2

r2
− 4 lnr

)
+ pZ

0 (Z), (2.11)

where A = R2
2 − R2

1 and pZ
0 is an unknown function of Z. The zero-order solution

is a cylindrical Couette flow with the addition of an unknown Z-dependence in the
pressure.

2.2. The first-order problem

The governing equations and boundary conditions for the first-order problem are

−2r−1v0v1 + ∂rp1 − Re−1
(
∂2

r u1 + r−1∂ru1 − r−2u1

)
= 0, (2.12a)

u1∂rv0 + r−1v0u1 − Re−1
(
∂2

r v1 + r−1∂rv1 − r−2v1

)
= 0, (2.12b)

∂Zp0 − Re−1
(
∂2

r w1 + r−1∂rw1

)
= 0, (2.12c)

∂ru1 + r−1u1 = 0. (2.12d)

u1 = v1 = w1 = 0, on r = R1 and R2. (2.12e)

From (2.12a), (2.12b) and (2.12d), we find that u1, v1 and ∂p1/∂r are all zero. Next,
we solve (2.12c) using separation of variables, w1 = wr

1(r)w
Z
1 (Z), and find that

wZ
1 = −Re

dpZ
0

dZ
, wr

1 =
A lnr + (lnη)r2 + B

−4 lnη
, (2.13)

where B = R2
1 lnR2 −R2

2 lnR1. Solution (2.13) is similar to annular Poiseuille flow with
the exception that dpZ

0 /dZ and consequently w1 may vary with Z.

2.3. The second-order problem

The governing equations and boundary conditions for the second-order problem are

−2r−1v0v2 + ∂rp2 − Re−1
(
∂2

r u2 + r−1∂ru2 − r−2u2

)
= 0, (2.14a)

u2∂rv0 + r−1u2v0 − Re−1
(
∂2

r v2 + r−1∂rv2 − r−2v2

)
= 0, (2.14b)

∂Zp1 − Re−1
(
∂2

r w2 + r−1∂rw2

)
= 0, (2.14c)
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∂ru2 + r−1u2 + ∂Zw1 = 0. (2.14d)

v2 = w2 = 0, u2 = −Rep0, on r = R1, (2.14e)

u2 = v2 = w2 = 0, on r = R2. (2.14f)

The boundary conditions at second-order are similar to those for the first-order
problem with the exception that Darcy’s law appears at the inner cylinder. To solve
the second-order problem, we seek a solution to u2 using separation of variables as
expected from (2.13), u2 = ur

2(r)u
Z
2 (Z), and solve (2.14d) with the condition u2 = 0 at

r = R2,

uZ
2 = −Re

d2pZ
0

dZ2
, ur

2 =
1

16 lnη

[
C

r
+ 2Ar lnr + (2B − A)r + (lnη)r3

]
, (2.15)

where C = AR2
2 + R4

2 lnη. Substituting (2.11) and (2.15) into the Darcy condition in
(2.14e) produces an ordinary differential equation which we solve for pZ

0 ,

pZ
0 = MeZ/λ + Ne−Z/λ − D, D =

R2
1R

2
2

2A2
(η2 + η−2 − 4 lnR1), λ =

√
ur

2(R1), (2.16)

where M and N are constants determined by prescribing two independent quantities
among p0, w1 or u2 at two arbitrary, possibly coincident, axial locations. Applying
conditions (2.8g) yields

M =
Ptm

2
− λW

2εRewr
1

, N =
Ptm

2
+

λW

2εRewr
1

, with wr
1 =

(
R2

1 + R2
2

)
lnη + A

8 lnη
, (2.17)

where wr
1 is the mean of wr

1 defined in an analogous manner as W in (2.2). We
solve (2.14b) using separation of variables, v2 = vr

2(r)v
Z
2 (Z), and find that vZ

2 =
Re2(d2pZ

0 /dZ2),

vr
2 =

R1

128A lnη

[
Er +

F

r
+ 8Cr lnr + 4Ar3 lnr + (4B − 5A)r3 +

2

3
(lnη)r5

]
,

E = −8
C

A

(
R2

2 lnR2 − R2
1 lnR1

)
+

10 lnη

3

(
R4

1 + R2
1R

2
2 + R4

2

)
+ 5

(
R4

2 − R4
1

)
,

F = −R2
1R

2
2

[
8
C

A
lnη +

10 lnη

3

(
R2

1 + R2
2

)
+ 5A

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.18)

The solution for w2 and p1 requires that we solve the third-order problem resulting
in w2 = p1 = 0. To solve (2.14a) for p2 requires solving the fourth-order problem. For
brevity, we do not report the result because p2 has no effect on v2. Moreover, in § 3
we illustrate that p0 already shows an excellent agreement with numerical simulation.

3. Results and discussion
The resulting analytical solution may be written as

u(r, z) = ε2u2 = −ur
2

[
σ

RePtm

λ2
cosh(ζ ) −

√
σ

W

λwr
1

sinh(ζ )

]
, (3.1a)

v(r, z) = v0 + ε2v2 =
R1

(
R2

2 − r2
)

Ar
+ vr

2

[
σ

Re2Ptm

λ2
cosh(ζ ) −

√
σ

ReW

λwr
1

sinh(ζ )

]
, (3.1b)
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w(r, z) = εw1 = wr
1

[
W

wr
1

cosh(ζ ) −
√

σ
RePtm

λ
sinh(ζ )

]
, (3.1c)

p(r, z) = p0 =
R2

1R
2
2

2A2

(
r2

R2
2

− R2
2

r2
− 4 lnr

)
+ Ptmcosh(ζ ) − λW√

σRewr
1

sinh(ζ ) − D, (3.1d)

where ζ = z
√

σ/λ, with z non-dimensionalized with respect to d , i.e. z = ZL/d = Z/ε.
Solution (3.1) has several interesting limiting cases. As η = R1/R2 approaches unity,
(3.1) tends to a planar Couette–Poiseuille flow with pressure-dependent suction at one
wall. As η tends to zero, the inner cylinder tends to the superposition of a line vortex
and pressure-dependent sink. In the limit σ → 0, it can be shown using l’Hopital’s
rule that (3.1) recovers the classical solution for Couette–Poiseuille flow in an annulus.

For finite permeabilities, solution (3.1) predicts the conditions for which crossflow re-
versal (CFR) or axial flow exhaustion (AFE) occur. CFR, in which the transmembrane
flow changes from suction to injection, occurs at zCFR where u(R1, zCFR) = 0. AFE, in
which the axial flow reverses and fluid is drawn from both ends of the annulus, occurs
at zAFE where the mean axial flow rate vanishes, w(zAFE ) = 0. From (3.1), we find that

zCFR =
λ√
σ

tanh−1(1/β), zAFE =
λ√
σ

tanh−1β, with β =
Wλ√

σRePtmwr
1

. (3.2)

CFR occurs when |β| > 1, while AFE occurs when |β| < 1. Both zCFR and zAFE tend
to infinity as |β| → 1. When |β| �= 1, (3.1) predicts exponential behaviour as z → ±∞
due to the cosh(ζ ) and sinh(ζ ) terms. For the marginal cases β = ±1, however,
(3.1) predicts that the balance between the transmembrane and axial flows is such
that ∂p/∂z, w and u tend to zero in the limit z → ∞ for β = 1, and z → −∞ for
β = −1. These limiting cases tend to a classical Couette flow despite the non-zero
permeability. For a rotating filtration system with a given σ , η, T a and finite axial
length, (3.2) predicts which combinations of W and Ptm are necessary to avoid CFR
and AFE, respectively.

Available experimental studies use solutions or suspensions as working fluids and
consider supercritical flow regimes exhibiting vortical structures (see Jaffrin 2008, for
a partial review). We, therefore, validate (3.1) by performing a comparison with direct
numerical simulations of the unsteady axisymmetric Navier–Stokes and continuity
equations in a system with a radius ratio, η = 0.85, and finite axial length, −30 �
z � 30, typical of values for experiments (see, for example Min & Lueptow 1994). For
this purpose, we modify the Chebyshev–Chebyshev pseudo-spectral method of Serre
& Pulicani (2001) to accommodate Darcy’s law at r = R1. To avoid computational
difficulties related to the boundary conditions at the ends of the porous region, we
introduce buffer regions near the inlet, −30 � z � −20, and outlet, 20 � z � 30,
where we multiply the permeability by a function b(z) which tends smoothly to zero
at z = ±30. At the inlet, z = −30, a classical Couette–Poiseuille flow (σ = 0) with
a prescribed pressure on the inner cylinder and a prescribed mean axial flow rate is
imposed. The outlet velocity field is forced to be fully developed, i.e. ∂v/∂z = 0. The
computations begin with initial velocity and pressure fields of zero and are integrated
in time until steady state is reached. We then evaluate the transmembrane pressure
and mean axial flow rate at z = 0, and use these values for Ptm and W , respectively,
to calculate the corresponding analytical solution (3.1) for −30 � z � 30. For all
simulations, the Reynolds number is set to Re = 50 to ensure subcritical flow. We
verify mesh independence from the decay of the spectral coefficients, and use 50 and
100 Chebyshev polynomials in the r and z directions, respectively.
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Figure 2. Comparison of the asymptotic expansion (3.1) (solid lines) with a direct numerical
simulation (dashed lines) of CFR for η = 0.85, σ = 10−4, Re = 50, W = 0.04025, Ptm =
−0.04886, Utm = 2.443 × 10−4. The buffer regions have been shaded grey. (a) Comparison of
streamlines in the r–z plane neglecting the azimuthal velocity. (b) Comparison of the axial
variation of the transmembrane velocity, u(R1, z). (c) Comparison of the axial variation of
mean axial velocity, w(z). (d ) Comparison of the axial variation of the azimuthal velocity
at mid-gap v(Rmid, z) with Rmid = (R1 + R2)/2. The dash-dotted line depicts the zero-order
analytical solution v0(Rmid ) in (3.1b).

Figure 2 illustrates the analytical and numerical results for CFR characterized
by σ = 10−4, W = 0.04025, Ptm = −0.04886, Utm = −σRePtm = 2.443 × 10−4. The non-
dimensional permeability, σ , has been set four orders of magnitude larger than
typical values to stress that agreement between the analytical and numerical solutions
is conserved well beyond usual values for σ . The agreement in figure 2 is very
satisfying in the region of interest, −20 � z � 20, deviating only outside this region
in the buffer regions where such deviation is naturally expected due to the function
b(z) which modifies the permeability of the numerical solution. The transmembrane
flow in figure 2(b) reverses from suction in the upstream portion to injection in
the downstream portion as the pressure in the annulus decreases in the z direction.
Accordingly, the mean axial velocity in figure 2(c) decreases with streamwise position
for z < zCFR , but increases for z > zCFR . The numerical simulation yields zCFR =
−5.095, while (3.2) predicts zCFR = −5.108, a relative error of 0.25 %. In the region
−20 � z � 20, the analytical result for w(z) is always within 0.1 % of the numerical
result. Figure 2(d ) compares the numerical result for the axial variation of the
azimuthal velocity at mid-gap, Rmid = (R1 + R2)/2, with the analytical results v0 and
v0 + ε2v2. In the region −20 � z � 20, the leading order solution v0 remains within
0.8 % of the numerical solution. The correction for a permeable cylinder, v0 + ε2v2,
improves the agreement to within 0.015 % and demonstrates that suction pulls low-
azimuthal-momentum fluid radially inward, while injection pushes high-azimuthal-
momentum fluid outward.
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Figure 3. Comparison of the asymptotic expansion (3.1) (solid lines) with a direct numerical
simulation (dashed lines) of AFE for η = 0.85, σ = 10−4, Re = 50, W = 6.929 × 10−3,
Ptm = 0.2945, Utm = −1.473 × 10−3. (a)–(d ) Illustration of the same quantities as in figure 2
using the same conventions.

Figure 3 illustrates AFE for the parameters σ = 10−4, W = 6.929 × 10−3, Ptm =
0.2945, Utm = −1.473 × 10−3. Fluid enters the system from both ends of the annulus,
as is evident from the streamlines in figure 3(a). The mean axial velocity (see figure 3c)
vanishes at zAFE where the transmembrane suction (see figure 3b) is minimized. The
numerical simulation yields zAFE = 5.172, while (3.2) predicts zAFE = 5.170. The
theory again matches the numerical simulation quite well, and the errors for w(z) and
v0 + ε2v2 are on the same order as those for the case of CFR.

The agreement between the numerical and analytical results improves as σ tends
to zero, and deteriorates as σ increases. Figures 4(a) and 4(b) illustrate the analytical
and numerical results for the transmembrane velocity in high-permeability systems
exhibiting CFR for σ = 3 × 10−3 and AFE for σ = 0.01, respectively. Both cases
display a discrepancy between the analytical and numerical results that increases
with axial distance from z = 0. This is likely due to two compounding factors. First,
the higher order terms, which are neglected in (3.1), become more important as
the permeability increases. Second, the exponential behaviour as z → ±∞ is more
pronounced in figure 4 than in figures 2 and 3 due to the large permeabilities. Thus,
the systems in figure 4 extend outside the region in which variations in the axial
direction are small compared to those in the radial direction. Furthermore, because
zCFR and zAFE occur upstream of z = 0, the exponential behaviour and associated
discrepancy are greater on the downstream end of the systems.

We have successfully devised a formulation for Couette–Poiseuille flow with
pressure-dependent suction or injection at the inner cylinder. The analytical solution
accurately captures the complete velocity and pressure fields, and permits the
calculation of zCFR and zAFE , which are important design features for a practical
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Figure 4. Results for high permeabilities showing the discrepancy at large |z| between
the numerical simulation (dashed lines) and analytical solution (3.1a) (solid lines) for the
transmembrane velocity, u(R1, z), for η = 0.85 and Re = 50. (a) CFR for σ = 3 × 10−3, W =
5.106 × 10−4, Ptm = −8.859 × 10−5, Utm = 1.329 × 10−5. (b) AFE for σ = 0.01, W =
−1.854 × 10−5, Ptm = 2.629 × 10−5, Utm = −1.315 × 10−5.

system. The success of our method suggests a new approach to find analytic solutions
to laminar, wall-bounded, shear flows with pressure-dependent suction or injection.
These occur in such diverse applications as crossflow filtration, laminar flow control,
transpiration cooling and the transport of biological fluids. This study naturally
extends to the study of solute boundary layers and their effect on transmembrane flow
through the osmotic pressure. Furthermore, building on previous convective/absolute
stability analyses (Martinand et al. 2009), (3.1) provide a base flow to study centrifugal
instabilities in the form of global modes. This allows accurate computation of the
critical conditions for the appearance of vortices and their subsequent spatiotemporal
evolution.

The authors would like to acknowledge helpful discussions with I. Raspo and
P. Haldenwang and the financial support of the Agence Nationale de la Recherche
(program ANR-08-BLAN-0184-03).
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